培训4个月编程学什么比较好:滚动平均每五个月超过三个月

我想计算滚动方式,具有以下规格:

在给定月份的末尾开始,例如xx月

使用过去三个月的(每日)数据来计算此期间的平均值

注意:特定月份中的某些日期可能会有缺失值,并且每个月的天数可能会有所不同,这使得每次计算的观察次数通常是可变的

通过向前 5 个月重复此计算,例如,如果 5 月是最后一次计算,则在 10 月底等,以便窗口每 5 个月滑动一次,并使用最近 3 个可用月份的数据 [假设数据从 2018 年 3 月开始,第一个窗口将是:3 月-4 月-5 月 18 日,然后是 8 月-9 月-10 月 18 日,等等]

数据集 / 内存的大小对我来说很重要,因为我的真实数据集相当大

我搜索了很长时间,但没有找到任何明确的解决方案,当width参数是可变的并且窗口滑动时。我特别寻找zoo中的解决方案。另外datatableplyr(或xts)对于完成会很有趣。

示例数据(注意:这里没有缺失值,因为我无法轻松删除 datatable 中的行)

set.seed(44)  
dataset <- data.table(ID=c(rep("A",2208),rep("B",2208)),
x = c(rnorm(2208*2)), time=c(seq(as.Date("1988/03/15"),
as.Date("2000/04/16"), "day"),seq(as.Date("1988/03/15"),
as.Date("2000/04/16"), "day")))

数据集包含 2 个个体 A 和 B 的数据点 'X',其可用于计算平均值。

3

下面我们使用最后注释中显示的数据,而不是问题中的示例数据。

1) 2 rollapply创建一个 year / month 变量ym,然后对每个 ID 和 year / month 的值求和,同时计算每个 ID 和 year / month 中的值的数量。

library(data.table)
library(zoo)
ym <- as.yearmon(dataset$time)
roll <- function(x) rollapplyr(x, 3, by = 5, sum, fill = NA)
ds <- na.omit(dataset[, list(x = sum(x), n = .N), by = list(ID, time = ym)][
 , list(time, mean = roll(x) / roll(n)), by = ID])

给:

> ds
    ID     time         mean
 1:  A May 1988 -0.118017121
 2:  A Oct 1988 -0.045631016
 3:  A Mar 1989 -0.035498703
 4:  A Aug 1989 -0.055121507
 5:  A Jan 1990  0.018735210
 6:  A Jun 1990  0.091084791
 7:  A Nov 1990 -0.183955430
 8:  A Apr 1991  0.011909178
 9:  A Sep 1991 -0.040233435
10:  A Feb 1992  0.051567634
11:  A Jul 1992  0.006015941
12:  A Dec 1992  0.253320798
13:  A May 1993 -0.037722177
14:  A Oct 1993 -0.145811906
15:  A Mar 1994  0.134181429
16:  A Aug 1994 -0.119081185
17:  A Jan 1995  0.001921224
18:  A Jun 1995  0.232193754
19:  A Nov 1995 -0.077158954
20:  A Apr 1996 -0.070271862
21:  A Sep 1996  0.033858600
22:  A Feb 1997 -0.053623676
23:  A Jul 1997 -0.201388554
24:  A Dec 1997  0.051488747
25:  A May 1998 -0.073193772
26:  A Oct 1998 -0.094019699
27:  A Mar 1999 -0.078863959
28:  A Aug 1999  0.110231533
29:  A Jan 2000  0.141657202
30:  B May 1988  0.130180515
31:  B Oct 1988  0.025095818
32:  B Mar 1989 -0.032415997
33:  B Aug 1989  0.041286368
34:  B Jan 1990  0.219208544
35:  B Jun 1990 -0.023717715
36:  B Nov 1990 -0.049073449
37:  B Apr 1991 -0.051479646
38:  B Sep 1991  0.124340203
39:  B Feb 1992  0.040786822
40:  B Jul 1992  0.019159682
41:  B Dec 1992  0.083195470
42:  B May 1993  0.006695704
43:  B Oct 1993  0.119093846
44:  B Mar 1994  0.077608445
45:  B Aug 1994  0.132860266
46:  B Jan 1995 -0.225050074
47:  B Jun 1995 -0.091877628
48:  B Nov 1995 -0.157798169
49:  B Apr 1996 -0.219238136
50:  B Sep 1996  0.289506566
51:  B Feb 1997  0.118216626
52:  B Jul 1997  0.186950994
53:  B Dec 1997 -0.035447587
54:  B May 1998 -0.159754318
55:  B Oct 1998 -0.066470703
56:  B Mar 1999  0.230782925
57:  B Aug 1999 -0.052620748
58:  B Jan 2000 -0.190938190
    ID     time         mean

2) 1 rollapply上面的一个变体如下。它使用by.column = FALSE,以便mean2可以同时处理xn

library(data.table)
library(zoo)
ym <- as.yearmon(dataset$time)
mean2 <- function(xn) sum(xn[, 1]) / sum(xn[, 2])
roll2 <- function(x) rollapplyr(x, 3, by = 5, mean2, by.column = FALSE, fill = NA)
ds2 <- na.omit(dataset[, list(x = sum(x), n = .N), by = list(ID, time = ym)][
 , list(time, mean = roll2(.SD)), .SDcols = c("x", "n"), by = ID])

3)向量宽度

我们可以定义一个向量宽度,并像这样滚动应用。我们将宽度设置为一个大于那些不在月底的日期的元素数量的数字,以便它不计算这些日期的平均值。然后,我们计算每个月底的平均值,并在代码子集的最后一行中,每 5 个月计算一次。

library(data.table)
library(zoo)
ds3 <- dataset[, list(ID, time = as.yearmon(time), x)][, 
  list(time, x, width = seq_len(.N) - match(time - 2/12, time) + 1,
       is_last = !duplicated(time, fromLast = TRUE)), by = ID][, 
  list(time, x, width = na.fill(ifelse(is_last, width, .N + 1), .N+1)), by = ID][, 
  list(time, mean = rollapplyr(x, width, mean, fill = NA_real_)), 
  by = ID][, na.omit(.SD)[seq(1, .N, 5), ], by = ID]

4) data.table join这使用 data.table join 而不是 rollapple。eom 是一个 data.table,只包含月末的行。它还有一个列time2,表示 2 个月前的 yearmon。我们将其与 datasetym 连接,并提取适当的行和列。

library(data.table)
library(zoo)
datasetym <- dataset[, list(ID, time = as.yearmon(time), x)]
eom <- datasetym[, .SD[!duplicated(time, fromLast = TRUE), ], by = ID][
  , cbind(.SD, time2 = time - 2/12)]
ds4 <- datasetym[eom, list(mean = mean(x)), 
  on = .(ID, time >= time2, time <= time), by = .EACHI][
  , .SD[seq(3, .N, 5), -2], by = ID]

5)sqldf您可能更喜欢使用更熟悉的 SQL 语法来表示连接。创建datasetym并按(4)中的方式执行每个第 5 行。

library(data.table)
library(sqldf)
library(zoo)
datasetym <- dataset[, list(ID, time = as.yearmon(time), x)]
s <- sqldf("select a.ID, a.time, avg(b.x) mean
       from (select ID, time from datasetym group by ID, time) a
       left join datasetym b
       on a.ID = b.ID and b.time between a.time - 2.0/12.0 and a.time
       group by a.ID, a.time")
ds5 <- data.table(s)[, .SD[seq(3, .N, 5), ], by = ID]

6)动物园如果我们使用宽形式,我们可以只使用动物园来解决这个问题。如果需要,我们可以随时转换回长形式(如注释行所示)。

library(zoo)
z <- read.zoo(dataset, index = "time", split = "ID")
zsum <- aggregate(z, as.yearmon, sum)
zlength <- aggregate(z, as.yearmon, length)
zroll <- rollapplyr(zsum, 3, by = 5, sum) / rollapplyr(zlength, 3, by = 5, sum)
# fortify(zroll, melt = TRUE)  # if long form wanted

给:

> zroll
                    A            B
May 1988 -0.118017121  0.130180515
Oct 1988 -0.045631016  0.025095818
Mar 1989 -0.035498703 -0.032415997
Aug 1989 -0.055121507  0.041286368
Jan 1990  0.018735210  0.219208544
Jun 1990  0.091084791 -0.023717715
Nov 1990 -0.183955430 -0.049073449
Apr 1991  0.011909178 -0.051479646
Sep 1991 -0.040233435  0.124340203
Feb 1992  0.051567634  0.040786822
Jul 1992  0.006015941  0.019159682
Dec 1992  0.253320798  0.083195470
May 1993 -0.037722177  0.006695704
Oct 1993 -0.145811906  0.119093846
Mar 1994  0.134181429  0.077608445
Aug 1994 -0.119081185  0.132860266
Jan 1995  0.001921224 -0.225050074
Jun 1995  0.232193754 -0.091877628
Nov 1995 -0.077158954 -0.157798169
Apr 1996 -0.070271862 -0.219238136
Sep 1996  0.033858600  0.289506566
Feb 1997 -0.053623676  0.118216626
Jul 1997 -0.201388554  0.186950994
Dec 1997  0.051488747 -0.035447587
May 1998 -0.073193772 -0.159754318
Oct 1998 -0.094019699 -0.066470703
Mar 1999 -0.078863959  0.230782925
Aug 1999  0.110231533 -0.052620748
Jan 2000  0.141657202 -0.190938190

笔记

请注意,问题中定义的dataset有 8832 行,但用于定义 ID 列的向量只有 4416 个元素,因此它被回收,结果是前 2216 个日期在 A 中结束两次,而不是在 B 中,接下来的 2216 个日期在 B 中结束两次,而不是在 A 中。

set.seed(44)  
dataset <- data.table(ID = c(rep("A", 4416), rep("B", 4416)),
  x = rnorm(4416 * 2), 
  time = c(seq(as.Date("1988/03/15"), as.Date("2000/04/16"), "day")))

本站系公益性非盈利分享网址,本文来自用户投稿,不代表边看边学立场,如若转载,请注明出处

(806)
小程序选择框组件:如何为对话框和组件创建选择 AEM组件
上一篇
匹配系统:订单匹配系统设计:如何设计高效安全的加密账户系统
下一篇

相关推荐

发表评论

登录 后才能评论

评论列表(4条)